ˆn i 1 ni ni Ž. Ý Ý CENTRAL LIMIT THEOREM FOR LINEAR PROCESSES

Size: px
Start display at page:

Download "ˆn i 1 ni ni Ž. Ý Ý CENTRAL LIMIT THEOREM FOR LINEAR PROCESSES"

Transcription

1 The Aals of Proalty 997, Vol. 5, No., CENTRAL LIMIT THEOREM FOR LINEAR PROCESSES BY MAGDA PELIGRAD AND SERGEY UTEV Uversty of Ccat ad Isttute of MathematcsNovosrs I ths paper we study the CLT for partal sums of a geeralzed lear process X a, where sup a, max a 0asad s are tur, parwse mxg martgale dffer- eces, mxg sequeces or assocated sequeces. The results are mportat aalyzg the asymptotcal propertes of some estmators as well as of lear processes.. Itroducto. Let 4 e a cetered sequece of radom varales ad let a,4 e a tragular array of umers. May statstcal procedures produce estmators of the type Ž.. S a. To gve a example let us cosder the olear regresso model yž x. gž x. Ž x., where gž x. s a uow fucto ad Ž x. s the ose. Now we fx the desg pots x ad we get y gž x. Ž x. gž x., where 4 s a cetered sequece of radom varales. The oparametrc estmator of g x s defed to e g x w Ž x. y where ˆ x x x x h / ž h / wž x. Kž K, where K s a erel fucto. It s ovous that gˆ Ž x. Eg Ž x. ˆ s of the type Ž... We shall see later o that the asymptotc ehavor of the sums of varales of the form. X aj j, where aj j j ca e otaed y the study of the sums of the form Ž.., ad our results mprove o some ow results aout CLT for sums of the form Ž... Our paper s orgazed the followg way: Secto cotas the deftos Receved Aprl 994; revsed Septemer 996. Research supported part y a NSF Grat ad Taft Travel Grat. AMS 99 suject classfcatos. 60G09, 60F05. Key words ad phrases. Lear process, depedet radom varales, cetral lmt theorem. 443

2 444 M. PELIGRAD AND S. UTEV ad the results, Secto 3 cotas the proofs ad the Appedx cotas the statemets of some ow results used the proofs.. Results. Our frst theorem solves the prolem descred the troducto for some sequeces of martgale dffereces. DEFINITION.. We call X 4 a parwse mxg sequece f for every x real, sup cov IŽ X x., IŽ X x. 0 as. THEOREM.. Let 4 e a parwse mxg martgale dffereces se- quece of radom varales, ad let a ;4 e a tragular array of real umers such that. sup a ad max a 0 as. Assume ž / 4. s a uformly tegrale famly ad var a. The D 3. a NŽ 0,. as. As a corollary of the aove theorem we prove the followg. COROLLARY.. Let ; j Z4 j e a parwse mxg martgale dfferece sequece of radom varales whch s uformly tegrale L. Let a j; 4 j Z e a sequece of real umers such that j aj. Let X a ad S X. Assume varž S. j j j as ad f varž. 0. The j j S NŽ 0,. as. D Ths result s a exteso of Theorem Iragmov ad L Ž 97. from..d. to e the parwse mxg martgale case. It should e oted that the ergodcty caot replace the codto of parwse mxg Theorem.. We have the followg example. EXAMPLE.. There s a sequece, 4 of martgale dffereces whch s strctly statoary ad ergodc, havg fte secod momets ad there are 4 umers a, satsfyg. ad. ad such that a does ot coverge to a ormal dstruto.

3 CLT FOR LINEAR PROCESSES 445 We shall troduce ow some measures of depedece etwee two algeras. ad DEFINITION.. Let A ad B e two -algeras of evets ad defe Ž A, B. sup PŽ B A. PŽ B., A A, B B, PŽ A. 0 Ž A, B. sup corrž f, g. fl Ž A., gl Ž B. Ž A, B. sup PŽ AB. PŽ A. PŽ B. A A, B B 4 m DEFINITION.3. Let e a stochastc sequece ad let F Ž, m.. Ž a. We call the sequece -mxg f 0 where Ž. sup F, F. Ž. We call the sequece -mxg f 0 where Ž. sup F, F. Ž. c We call the sequece strogly mxg f 0 where Ž. sup F, F. It s well ow that the -mxg codto s the most restrctve ad the strog mxg s the weaest amog all. See Bradley Ž 986. for a survey. The ext theorem solves the same prolem as Theorem. for these three classes of depedet radom varales. The codtos mposed to the momets ad mxg rates are the same suffcet codtos, some sese mmal, requred for the valdty of CLT for strctly statoary sequeces. See Pelgrad Ž 986. for a survey, ad Douha, Massart ad Ro Ž 994. for a recet result o strog mxg sequeces. Therefore, the ext theorem exteds the ow results for strctly statoary mxg sequeces from equal weghts to geeral weghts, weaeg at the same tme the assumpto of statoarty. THEOREM.. Let a 4 e a tragular array of real umers satsfyg. ad let 4 e a cetered stochastc sequece satsfyg.. Assume that oe of the followg three codtos s satsfed: Ž a. 4 s -mxg. Ž. 4 s -mxg ad Ž j. j. Ž. c For a certa 0, 4 s strogly mxg, 4 s uformly tegrale, f var 0 ad. The.3 holds.

4 446 M. PELIGRAD AND S. UTEV REMARK.. I Theorem.Ž. c the codto f var 0 ca e re- moved ut ths requres further addtoal wor ad t wll e cosdered elsewhere. Our last theorem refers to assocated sequeces of radom varales. DEFINITION.4. We call the famly Ž X,..., X. assocated f for ay coordatewse ocreasg fuctos fž x,..., x. ad gž x,..., x. we have cov fž X,..., X., gž X,..., X. 0 wheever ths s defed. A sequece X 4 s called assocated f every fte famly of varales s assocated. The ext theorem exteds the well ow CLT of Newma ad Wrght Ž 98. to geeral weghts whle eepg the same codtos as the classcal case. THEOREM.3. Assume a 4 are oegatve umers satsfyg.. Let 4 e a assocated sequece of radom varales whch s cetered, satsfes. ad.4 cov, 0 as u uformly. j j: ju The.3 holds. 3. Proofs. 3.. Proof of Theorem.. I order to prove Theorem. we shall apply Theorem 3. from Hall ad Heyde Ž 980. whch s stated the Appedx for coveece Ž Theorem A.. It s easy to see that uder. ad. for every 0, 3. a E I a 0 as. ad therefore, for every 0, E max a I a 0 as, whch proves Ž a. ad Ž c. of Theorem A. I order to verfy Ž. we shall prove the followg lemma whch wll coclude the proof of Theorem.. LEMMA 3.. Suppose that f s a cotuous fucto such that X fž.4 s a uformly tegrale famly L. Let t ;4 e a tragular array of real umers such that Ž 3.. sup t T

5 ad Ž 3.3. lm max t 0. CLT FOR LINEAR PROCESSES 447 The X EX t 0 as. P PROOF. Let M ad 0 e two real umers ad defe M M, sup fž t. fž s.. t, s M ; ts M For, deote y Y fž j. IŽj Ž j.. jm. From the defto of Y we deduce that for every, X I M M Y a.s., whece, y Jese equalty ad 3., ž Ž. / ž Ž. / E X Y t EX EY t Ž. E X Y t T sup EX Y T sup E X I M TŽ., whece the facts that X 4 s a uformly tegrale famly L, 4 s ouded proalty ad f s cotuous show that t s eough to prove the valdty of the lemma for Y wth M ad fxed., j Deote y X IŽ j.. We have M, j, j Ž Y EY. t fž j. Ž X EX. t jm, j, j Ž. X EX t ad therefore t remas to estalsh the lemma for X, j wth ad j fxed., j, j Deote y sup covž X, X. ad y the codto of parwse mxg Ž as. Wth the aove otato we have the followg estmate:,, j, j 3.5 var t X t E X t t Ovously we have, j 3.6 t E X T max t.

6 448 M. PELIGRAD AND S. UTEV To estmate the secod term 3.5 we splt the sum two, oe up to h ad aother after h, where h s a teger: Ž 3.7. By 3.5, 3.6 ad 3.7, t t h max t t,, h max t t h, ht max t T max. h, j h var t X T h max t T max ad the result follows y 3.3 ad 3.4 y lettg frst,, ad after, h. 3.. Proof of Corollary.. Wthout restrctg the geeralty, we ca assume sup E. We have S X a. j j j I order to apply Theorem., we fx W such that j W a j 3 ad tae W. The ž j/ j ž j/ j j j S a a T U ad we have the followg estmate Ž 3.8. ž j / j aj aj j j var U a a 0 as. j j W Therefore we have oly to prove that T NŽ 0,. D as. Accordg to Theorem. t s suffcet to show that sup a j j 0 as. Let us suppose o the cotrary that for some 0 there exst a susequece j,, such that j a.

7 CLT FOR LINEAR PROCESSES 449 Deote y A sup a ad otce that for r j, Hece r a AŽ r j.. jw jw j j a W 4 A Ž j. W 4 A W. Tag W to e the least teger greater tha or equal to 3 ad ecause, we ota for suffcetly large, whch s a cotradcto A, Costructo of Example.. Let Z 4 ad Y 4 e two depedet sequeces of radom varales such that PŽ Z 0. PŽ Z., Z Z for all ad Y 4 s a..d. sequece of stadard ormal varales. Defe ZY for. It s easy to verfy that 4 s a strctly statoary sequece of martgale dffereces wth varž.. We shall prove that 4 s ergodc y verfyg cf. Shryayev Ž 984., chapter V that for every measurale ouded fucto f ad every postve teger we have f Ž,...,. Ef Ž,...,. a.s. as. Deote y X fž,...,.. If we fx Z, say Z, the the se- quece 4 ecomes Y,0,Y,0,.... If Z 0, the sequece 4 3 cossts of 0, Y,0,Y 4,.... Therefore for Z fxed, the sequece X 4 ecomes statoary ad - depedet, therefore ergodc, ad we have IŽ Z. X IŽ Z. Ef Ž Y,0,Y 3,... a.s.,, : eve IŽ Z. X IŽ Z. Ef Ž 0, Y 3,0,.... a.s.,, : odd IŽ Z 0. X IŽ Z 0. Ef Ž 0, Y,0,.... a.s.,, : eve IŽ Z 0. X IŽ Z 0. Ef Ž Y,0,Y 4,... a.s., : odd

8 450 M. PELIGRAD AND S. UTEV Now we add all these relatos, ad y statoarty ad costructo we have: 3 4 X Ef Ž Y,0,Y,... Ef Ž 0, Y,0,Y,... Ef Ž X. a.s. Let us ow cosder the umers a 4 satsfyg.,. ad addto, :odd a 3 for all. Set S a ad let Y e a sta- dard ormal radom varale depedet of Z 4. By the costructo S has the same dstruto as Y' az. Because Z Z for every we have , : odd, : eve a Z Z a Z a Z Z Z. Therefore S has a fxed ogaussa dstruto for all Proof of Theorem.Ž a,. Ž.. I order to prove Theorem.3 uder the assumptos Ž a. ad Ž., accordg to Theorem. ad Theorem 4., respectvely, Utev Ž 990. we have oly to verfy the Ldeerg s codto Ea I a 0 as for every 0 ad ths follows exactly as 3. y. ad.. Ž Proof of Theorem. c. I order to prove ths part of Theorem., we shall frst use a trucato argumet ad after that we shall apply Theorem B from the Appedx. The proof requres the followg auxlary lemma. 4 Ž. LEMMA 3.. Assume X satsfes the codtos of Theorem. c the a a var a X C a Ž where C sup EX c. sup X, ad cž. s a umercal costat depedg o. PROOF. We have j j a a ja j var a X a var X a a, cov X, X j a a ja, j a var X a cov X, X whece the result follows y Lemma B from the Appedx.

9 CLT FOR LINEAR PROCESSES 45 Ž. I order to prove Theorem. c, we shall trucate frst the varales at the level A 0 ad deote ad I A E I A I A E I A. By Lemma 3. there s a postve costat C such that var a C sup E I A sup E I A ad otce that y the uform tegralty of 4 A Ž 3.9. lm sup var a 0. By. ad 3.9 we ota Ž 3.0. lm var a uformly. A By 3.9, 3.0 ad Theorem 4. Bllgsley 968, order to prove the theorem t s eough to show that for every fxed postve A we have a st dev a Ž. NŽ 0,. as. D To prove ths we shall verfy the codtos of Theorem B gve the Appedx. The codto Ž a. requres a uform oud o the varace of partal sums whch follows y Lemma 3.. The Ldeerg codto Ž d. s satsfed y.,. ad Ž Codto Ž. s a cosequece of.,. ad Ž We have oly to verfy codto Ž c.. Let Ž.. Notce that y Lemma A the Appedx, we ca fd a costat K such that Ž 3.. c ½ j j5 ja u ½ 5 c ½ 5 ž cov exp t a, exp t a ½ 5 / cov exp t a, exp t a ja j j u c Ž. j j j j ja ju K t u a a.

10 45 M. PELIGRAD AND S. UTEV Notce ow that y Lemma 3. ad the Holder equalty, we fd a costat K such that ž /ž / a a Ž. ž / a a a a E a A E a a K Ž A. a a Ž a. K Ž A. a Ž a.. Therefore the rght-had sde of Ž 3.. s ouded aove y c Ž. 3 a K t u c a a, where u Ž c a. ad K 3 s a costat. Due to our codto o Ž. ad the selecto of, we have Ž. Ž. Ž. Ž Ž.. K 4 ž / Ž. K5, where K ad K are costats, whch completes the proof of Theorem. 4 5 Ž. uder c Proof of Theorem.3. Wthout loss of geeralty we assume that a 0 for all. For every a ad u a we have, after smple mapulatos, Ž 3.. u j Ž j ž./ a ju Ž j. j: j u a 0 a a cov, sup cov, a. I partcular y 4., there exsts a costat C such that for every a, a a var a C a. We shall costruct ow a tragular array of radom varales Z, 4 for whch we shall mae use of Theorem C the Appedx. Fx a small postve ad fd a postve teger u u such that u j Ž j ž./ ju 0 a a cov, for every u.

11 CLT FOR LINEAR PROCESSES 453 Ths s possle ecause of Ž 3.. ad 4.. Deote y x the teger part of x ad defe K, u j Y a, j 0,,..., j uj KjK j ½, Ž. K Kj 5 A : Kj Kj K, cov Y, Y var Y. Sce covž Y, Y. varž Y. varž Y.,,, we get that for every j the set A j s ot empty. Now we defe the tegers m, m,..., m recurretly y m0 0: ad defe m mm; m m, m A 4 j j j m j Z Y, j 0,,..., j m j 4 u m,..., u m. j j j We oserve that Z a X, j 0,,.... j j It s easy to see that every set j cotas o more tha 3Ku elemets. Hece, for every fxed postve y. ad. the array Z :,..., ; 4 satsfes the Ldeerg s codto. It remas to oserve that y Theorem C ad costructo j Ł Ž j. j j ct var Zj varž Zj ž./ j j ct covž Z, Z covž Z, Z ž, / j ž./ j u ct 4 a aj covž, j. covž Y m, Y, m ž. j j / ju j E exp t Z E exp tz

12 454 M. PELIGRAD AND S. UTEV 8 ž Ž. K / ž / ct 4 var Y c t var a cž t.. Now the proof s complete y Theorem 4. Bllgsley 968. APPENDIX Ths secto cotas some of the theorems whch were used the proofs of the results of Secto 3. The followg lemma s a varat of Theorem 7.. Iragmov ad L Ž 97.. The costat comes from Theorema. Bradley ad Bryc Ž LEMMA A. Let, e two complex-valued radom varales measurale wth respect to A Ž. ad B Ž.. Let 0 ad assume E ad E ; the E EŽ. E Ž A, B.. By the applcato of Theorem. Ro 993, followed y the CauchySchwarz equalty, we formulate the followg result. LEMMA B. Let X 4 e a strogly mxg sequece of radom varales such that EX for a certa 0 ad every. The there s a umercal costat cž. depedg oly o such that for every we have m m Ž. j j covž X, X. cž. sup X. The followg theorem s a smplfed verso of Theorem 3. from Hall ad Heyde 980. THEOREM A. Let X, 4 e a square tegrale martgale dfferece sequece uder the atural fltratos. Suppose that: Ž a. max X P 0; X P ; Ž. c E max X s ouded. The S N 0, as where S X. D

13 CLT FOR LINEAR PROCESSES 455 A careful aalyss of the proof of Theorem 4. Utev 990 gves the followg statemet. THEOREM B. Let X, 4 e a tragular array of radom var- ales such that the followg hold. Ž. a var X C varž X. ja j ja j for every 0 a where C s a uversal costat; var Ž j Xj. Ž. lm f 0; var X j ž / c c Ž c. cov exp t X, exp t X h Ž u. var X j j j t j ja ju ja for every a c where h Ž u. 0, h Ž. t t ad u s of the form u Ž c a. for a certa 0 ; Ž. d EXI X 0 as for every 0, where Ž deotes var X.. The S NŽ 0,. as. D The ext theorem s tae from Newma ad Wrght 98. THEOREM C. Let Z,4 e a assocated famly of radom var- ales. The j Ł j j j j j j j E exp t Z E exp tz ct var Z var Z. Acowledgmets. We would le to tha Emmauel Ro for potg out to us that pot Ž. c of Theorem. holds ths gve form, whch s more geeral tha a earler verso of the paper. May thas go to Rchard Bradley who commeted aout the parwse mxg codto. He provded us wth two examples provg that ether does parwse mxg mply ergodcty or does ergodcty mply parwse mxg. Hs examples motvated ad spred Example.. We also wat to tha Q-Ma Shao who otced that uform tegralty could replace the strctly statoarty assumpto whch was used a prevous verso of ths paper. We tha also the referee who poted out a gap the proof of Theorem. ad for hs may useful suggestos whch mproved the presetato of ths paper. REFERENCES BILLINGSLEY, P. Ž Covergece of Proalty Measures. Wley, New Yor. BRADLEY, R. C. Ž Basc propertes of strog mxg codtos. Progr. Proa. Statst BRADLEY, R. C. ad BRYC, W. Ž Multlear forms ad measures of depedece etwee radom varales. J. Multvarate Aal COX, J. T. ad GRIMMET, G. Ž Cetral lmt theorems for assocated radom varales ad the percolato model. A. Proa

14 456 M. PELIGRAD AND S. UTEV DOUKHAN, P., MASSART, P. ad RIO, E. Ž The fuctoal cetral lmt theorem for strogly mxg processes. A. Ist. H. Pocare HALL, P. ad HEYDE, C. C. Ž Martgale Lmt Theory ad Its Applcatos. Academc Press, New Yor. IBRAGIMOV, I. A. ad LINNIK, YU. V. Ž 97.. Idepedet ad Statoary Sequeces of Radom Varales. Wolters, Groge. NEWMAN, C. M. ad WRIGHT, A. L. Ž 98.. A varace prcple for certa depedet sequeces. A. Proa PELIGRAD, M. Ž Recet advaces the cetral lmt theorem ad ts wea varace prcple for mxg sequeces of radom varales. Prog. Proa. Statst RIO, E. Ž Covarace equaltes for strogly mxg processes. A. Ist. H. Pocare RIO, E. Ž Aout the Ldeerg method for strogly mxg sequeces. ESIAM: Proalty ad Statstcs 356. SHIRYAYEV, A. N. Ž Proalty. Sprger, New Yor. UTEV, S. A. Ž Cetral lmt theorem for depedet radom varales. Proa. Theory Math. Statst DEPARTMENT OF MATHEMATICAL SCIENCES UNIVERSITY OF CINCINNATI P.O. BOX 005 CINCINNATI,OHIO INSTITUTE OF MATHEMATICS NOVOSIBIRSK RUSSIA AND DEPARTMENT OF MATHEMATICS AND STATISTICS LATROBE UNIVERSITY BUNDOORA, VIC 3084 AUSTRALIA

Complete Convergence and Some Maximal Inequalities for Weighted Sums of Random Variables

Complete Convergence and Some Maximal Inequalities for Weighted Sums of Random Variables Joural of Sceces, Islamc Republc of Ira 8(4): -6 (007) Uversty of Tehra, ISSN 06-04 http://sceces.ut.ac.r Complete Covergece ad Some Maxmal Iequaltes for Weghted Sums of Radom Varables M. Am,,* H.R. Nl

More information

Strong Convergence of Weighted Averaged Approximants of Asymptotically Nonexpansive Mappings in Banach Spaces without Uniform Convexity

Strong Convergence of Weighted Averaged Approximants of Asymptotically Nonexpansive Mappings in Banach Spaces without Uniform Convexity BULLETIN of the MALAYSIAN MATHEMATICAL SCIENCES SOCIETY Bull. Malays. Math. Sc. Soc. () 7 (004), 5 35 Strog Covergece of Weghted Averaged Appromats of Asymptotcally Noepasve Mappgs Baach Spaces wthout

More information

Complete Convergence for Weighted Sums of Arrays of Rowwise Asymptotically Almost Negative Associated Random Variables

Complete Convergence for Weighted Sums of Arrays of Rowwise Asymptotically Almost Negative Associated Random Variables A^VÇÚO 1 32 ò 1 5 Ï 2016 c 10 Chese Joural of Appled Probablty ad Statstcs Oct., 2016, Vol. 32, No. 5, pp. 489-498 do: 10.3969/j.ss.1001-4268.2016.05.005 Complete Covergece for Weghted Sums of Arrays of

More information

Non-uniform Turán-type problems

Non-uniform Turán-type problems Joural of Combatoral Theory, Seres A 111 2005 106 110 wwwelsevercomlocatecta No-uform Turá-type problems DhruvMubay 1, Y Zhao 2 Departmet of Mathematcs, Statstcs, ad Computer Scece, Uversty of Illos at

More information

ρ < 1 be five real numbers. The

ρ < 1 be five real numbers. The Lecture o BST 63: Statstcal Theory I Ku Zhag, /0/006 Revew for the prevous lecture Deftos: covarace, correlato Examples: How to calculate covarace ad correlato Theorems: propertes of correlato ad covarace

More information

Summary of the lecture in Biostatistics

Summary of the lecture in Biostatistics Summary of the lecture Bostatstcs Probablty Desty Fucto For a cotuos radom varable, a probablty desty fucto s a fucto such that: 0 dx a b) b a dx A probablty desty fucto provdes a smple descrpto of the

More information

STRONG CONSISTENCY OF LEAST SQUARES ESTIMATE IN MULTIPLE REGRESSION WHEN THE ERROR VARIANCE IS INFINITE

STRONG CONSISTENCY OF LEAST SQUARES ESTIMATE IN MULTIPLE REGRESSION WHEN THE ERROR VARIANCE IS INFINITE Statstca Sca 9(1999), 289-296 STRONG CONSISTENCY OF LEAST SQUARES ESTIMATE IN MULTIPLE REGRESSION WHEN THE ERROR VARIANCE IS INFINITE J Mgzhog ad Che Xru GuZhou Natoal College ad Graduate School, Chese

More information

X ε ) = 0, or equivalently, lim

X ε ) = 0, or equivalently, lim Revew for the prevous lecture Cocepts: order statstcs Theorems: Dstrbutos of order statstcs Examples: How to get the dstrbuto of order statstcs Chapter 5 Propertes of a Radom Sample Secto 55 Covergece

More information

Chapter 5 Properties of a Random Sample

Chapter 5 Properties of a Random Sample Lecture 6 o BST 63: Statstcal Theory I Ku Zhag, /0/008 Revew for the prevous lecture Cocepts: t-dstrbuto, F-dstrbuto Theorems: Dstrbutos of sample mea ad sample varace, relatoshp betwee sample mea ad sample

More information

Marcinkiewicz strong laws for linear statistics of ρ -mixing sequences of random variables

Marcinkiewicz strong laws for linear statistics of ρ -mixing sequences of random variables Aas da Academa Braslera de Cêcas 2006 784: 65-62 Aals of the Brazla Academy of Sceces ISSN 000-3765 www.scelo.br/aabc Marckewcz strog laws for lear statstcs of ρ -mxg sequeces of radom varables GUANG-HUI

More information

The Mathematical Appendix

The Mathematical Appendix The Mathematcal Appedx Defto A: If ( Λ, Ω, where ( λ λ λ whch the probablty dstrbutos,,..., Defto A. uppose that ( Λ,,..., s a expermet type, the σ-algebra o λ λ λ are defed s deoted by ( (,,...,, σ Ω.

More information

Research Article Some Strong Limit Theorems for Weighted Product Sums of ρ-mixing Sequences of Random Variables

Research Article Some Strong Limit Theorems for Weighted Product Sums of ρ-mixing Sequences of Random Variables Hdaw Publshg Corporato Joural of Iequaltes ad Applcatos Volume 2009, Artcle ID 174768, 10 pages do:10.1155/2009/174768 Research Artcle Some Strog Lmt Theorems for Weghted Product Sums of ρ-mxg Sequeces

More information

Entropy ISSN by MDPI

Entropy ISSN by MDPI Etropy 2003, 5, 233-238 Etropy ISSN 1099-4300 2003 by MDPI www.mdp.org/etropy O the Measure Etropy of Addtve Cellular Automata Hasa Aı Arts ad Sceces Faculty, Departmet of Mathematcs, Harra Uversty; 63100,

More information

Extreme Value Theory: An Introduction

Extreme Value Theory: An Introduction (correcto d Extreme Value Theory: A Itroducto by Laures de Haa ad Aa Ferrera Wth ths webpage the authors ted to form the readers of errors or mstakes foud the book after publcato. We also gve extesos for

More information

Hájek-Rényi Type Inequalities and Strong Law of Large Numbers for NOD Sequences

Hájek-Rényi Type Inequalities and Strong Law of Large Numbers for NOD Sequences Appl Math If Sc 7, No 6, 59-53 03 59 Appled Matheatcs & Iforato Sceces A Iteratoal Joural http://dxdoorg/0785/as/070647 Háje-Réy Type Iequaltes ad Strog Law of Large Nuers for NOD Sequeces Ma Sogl Departet

More information

Research Article A New Iterative Method for Common Fixed Points of a Finite Family of Nonexpansive Mappings

Research Article A New Iterative Method for Common Fixed Points of a Finite Family of Nonexpansive Mappings Hdaw Publshg Corporato Iteratoal Joural of Mathematcs ad Mathematcal Sceces Volume 009, Artcle ID 391839, 9 pages do:10.1155/009/391839 Research Artcle A New Iteratve Method for Commo Fxed Pots of a Fte

More information

18.413: Error Correcting Codes Lab March 2, Lecture 8

18.413: Error Correcting Codes Lab March 2, Lecture 8 18.413: Error Correctg Codes Lab March 2, 2004 Lecturer: Dael A. Spelma Lecture 8 8.1 Vector Spaces A set C {0, 1} s a vector space f for x all C ad y C, x + y C, where we take addto to be compoet wse

More information

{ }{ ( )} (, ) = ( ) ( ) ( ) Chapter 14 Exercises in Sampling Theory. Exercise 1 (Simple random sampling): Solution:

{ }{ ( )} (, ) = ( ) ( ) ( ) Chapter 14 Exercises in Sampling Theory. Exercise 1 (Simple random sampling): Solution: Chapter 4 Exercses Samplg Theory Exercse (Smple radom samplg: Let there be two correlated radom varables X ad A sample of sze s draw from a populato by smple radom samplg wthout replacemet The observed

More information

arxiv:math/ v2 [math.gr] 26 Feb 2001

arxiv:math/ v2 [math.gr] 26 Feb 2001 arxv:math/0101070v2 [math.gr] 26 Feb 2001 O drft ad etropy growth for radom walks o groups Aa Erschler (Dyuba) e-mal: aad@math.tau.ac.l, erschler@pdm.ras.ru 1 Itroducto prelmary verso We cosder symmetrc

More information

Chapter 4 Multiple Random Variables

Chapter 4 Multiple Random Variables Revew for the prevous lecture: Theorems ad Examples: How to obta the pmf (pdf) of U = g (, Y) ad V = g (, Y) Chapter 4 Multple Radom Varables Chapter 44 Herarchcal Models ad Mxture Dstrbutos Examples:

More information

A Remark on the Uniform Convergence of Some Sequences of Functions

A Remark on the Uniform Convergence of Some Sequences of Functions Advaces Pure Mathematcs 05 5 57-533 Publshed Ole July 05 ScRes. http://www.scrp.org/joural/apm http://dx.do.org/0.436/apm.05.59048 A Remark o the Uform Covergece of Some Sequeces of Fuctos Guy Degla Isttut

More information

1 Lyapunov Stability Theory

1 Lyapunov Stability Theory Lyapuov Stablty heory I ths secto we cosder proofs of stablty of equlbra of autoomous systems. hs s stadard theory for olear systems, ad oe of the most mportat tools the aalyss of olear systems. It may

More information

Part 4b Asymptotic Results for MRR2 using PRESS. Recall that the PRESS statistic is a special type of cross validation procedure (see Allen (1971))

Part 4b Asymptotic Results for MRR2 using PRESS. Recall that the PRESS statistic is a special type of cross validation procedure (see Allen (1971)) art 4b Asymptotc Results for MRR usg RESS Recall that the RESS statstc s a specal type of cross valdato procedure (see Alle (97)) partcular to the regresso problem ad volves fdg Y $,, the estmate at the

More information

9 U-STATISTICS. Eh =(m!) 1 Eh(X (1),..., X (m ) ) i.i.d

9 U-STATISTICS. Eh =(m!) 1 Eh(X (1),..., X (m ) ) i.i.d 9 U-STATISTICS Suppose,,..., are P P..d. wth CDF F. Our goal s to estmate the expectato t (P)=Eh(,,..., m ). Note that ths expectato requres more tha oe cotrast to E, E, or Eh( ). Oe example s E or P((,

More information

Assignment 5/MATH 247/Winter Due: Friday, February 19 in class (!) (answers will be posted right after class)

Assignment 5/MATH 247/Winter Due: Friday, February 19 in class (!) (answers will be posted right after class) Assgmet 5/MATH 7/Wter 00 Due: Frday, February 9 class (!) (aswers wll be posted rght after class) As usual, there are peces of text, before the questos [], [], themselves. Recall: For the quadratc form

More information

The Lucas and Babbage congruences

The Lucas and Babbage congruences The Lucas ad Baage cogrueces Dar Grerg Feruary 26, 2018 Cotets 01 Itroducto 1 1 The cogrueces 2 11 Bomal coeffcets 2 12 Negatve 3 13 The two cogrueces 4 2 Proofs 5 21 Basc propertes of omal coeffcets modulo

More information

X X X E[ ] E X E X. is the ()m n where the ( i,)th. j element is the mean of the ( i,)th., then

X X X E[ ] E X E X. is the ()m n where the ( i,)th. j element is the mean of the ( i,)th., then Secto 5 Vectors of Radom Varables Whe workg wth several radom varables,,..., to arrage them vector form x, t s ofte coveet We ca the make use of matrx algebra to help us orgaze ad mapulate large umbers

More information

Extend the Borel-Cantelli Lemma to Sequences of. Non-Independent Random Variables

Extend the Borel-Cantelli Lemma to Sequences of. Non-Independent Random Variables ppled Mathematcal Sceces, Vol 4, 00, o 3, 637-64 xted the Borel-Catell Lemma to Sequeces of No-Idepedet Radom Varables olah Der Departmet of Statstc, Scece ad Research Campus zad Uversty of Tehra-Ira der53@gmalcom

More information

MATH 247/Winter Notes on the adjoint and on normal operators.

MATH 247/Winter Notes on the adjoint and on normal operators. MATH 47/Wter 00 Notes o the adjot ad o ormal operators I these otes, V s a fte dmesoal er product space over, wth gve er * product uv, T, S, T, are lear operators o V U, W are subspaces of V Whe we say

More information

Lecture 02: Bounding tail distributions of a random variable

Lecture 02: Bounding tail distributions of a random variable CSCI-B609: A Theorst s Toolkt, Fall 206 Aug 25 Lecture 02: Boudg tal dstrbutos of a radom varable Lecturer: Yua Zhou Scrbe: Yua Xe & Yua Zhou Let us cosder the ubased co flps aga. I.e. let the outcome

More information

UNIVERSITY OF OSLO DEPARTMENT OF ECONOMICS

UNIVERSITY OF OSLO DEPARTMENT OF ECONOMICS UNIVERSITY OF OSLO DEPARTMENT OF ECONOMICS Postpoed exam: ECON430 Statstcs Date of exam: Jauary 0, 0 Tme for exam: 09:00 a.m. :00 oo The problem set covers 5 pages Resources allowed: All wrtte ad prted

More information

Econometric Methods. Review of Estimation

Econometric Methods. Review of Estimation Ecoometrc Methods Revew of Estmato Estmatg the populato mea Radom samplg Pot ad terval estmators Lear estmators Ubased estmators Lear Ubased Estmators (LUEs) Effcecy (mmum varace) ad Best Lear Ubased Estmators

More information

Lecture 3 Probability review (cont d)

Lecture 3 Probability review (cont d) STATS 00: Itroducto to Statstcal Iferece Autum 06 Lecture 3 Probablty revew (cot d) 3. Jot dstrbutos If radom varables X,..., X k are depedet, the ther dstrbuto may be specfed by specfyg the dvdual dstrbuto

More information

( ) = ( ) ( ) Chapter 13 Asymptotic Theory and Stochastic Regressors. Stochastic regressors model

( ) = ( ) ( ) Chapter 13 Asymptotic Theory and Stochastic Regressors. Stochastic regressors model Chapter 3 Asmptotc Theor ad Stochastc Regressors The ature of eplaator varable s assumed to be o-stochastc or fed repeated samples a regresso aalss Such a assumpto s approprate for those epermets whch

More information

STRONG CONSISTENCY FOR SIMPLE LINEAR EV MODEL WITH v/ -MIXING

STRONG CONSISTENCY FOR SIMPLE LINEAR EV MODEL WITH v/ -MIXING Joural of tatstcs: Advaces Theory ad Alcatos Volume 5, Number, 6, Pages 3- Avalable at htt://scetfcadvaces.co. DOI: htt://d.do.org/.864/jsata_7678 TRONG CONITENCY FOR IMPLE LINEAR EV MODEL WITH v/ -MIXING

More information

Lecture 7. Confidence Intervals and Hypothesis Tests in the Simple CLR Model

Lecture 7. Confidence Intervals and Hypothesis Tests in the Simple CLR Model Lecture 7. Cofdece Itervals ad Hypothess Tests the Smple CLR Model I lecture 6 we troduced the Classcal Lear Regresso (CLR) model that s the radom expermet of whch the data Y,,, K, are the outcomes. The

More information

ECON 5360 Class Notes GMM

ECON 5360 Class Notes GMM ECON 560 Class Notes GMM Geeralzed Method of Momets (GMM) I beg by outlg the classcal method of momets techque (Fsher, 95) ad the proceed to geeralzed method of momets (Hase, 98).. radtoal Method of Momets

More information

PROJECTION PROBLEM FOR REGULAR POLYGONS

PROJECTION PROBLEM FOR REGULAR POLYGONS Joural of Mathematcal Sceces: Advaces ad Applcatos Volume, Number, 008, Pages 95-50 PROJECTION PROBLEM FOR REGULAR POLYGONS College of Scece Bejg Forestry Uversty Bejg 0008 P. R. Cha e-mal: sl@bjfu.edu.c

More information

5 Short Proofs of Simplified Stirling s Approximation

5 Short Proofs of Simplified Stirling s Approximation 5 Short Proofs of Smplfed Strlg s Approxmato Ofr Gorodetsky, drtymaths.wordpress.com Jue, 20 0 Itroducto Strlg s approxmato s the followg (somewhat surprsg) approxmato of the factoral,, usg elemetary fuctos:

More information

A NEW LOG-NORMAL DISTRIBUTION

A NEW LOG-NORMAL DISTRIBUTION Joural of Statstcs: Advaces Theory ad Applcatos Volume 6, Number, 06, Pages 93-04 Avalable at http://scetfcadvaces.co. DOI: http://dx.do.org/0.864/jsata_700705 A NEW LOG-NORMAL DISTRIBUTION Departmet of

More information

Chapter 4 Multiple Random Variables

Chapter 4 Multiple Random Variables Revew o BST 63: Statstcal Theory I Ku Zhag, /0/008 Revew for Chapter 4-5 Notes: Although all deftos ad theorems troduced our lectures ad ths ote are mportat ad you should be famlar wth, but I put those

More information

Special Instructions / Useful Data

Special Instructions / Useful Data JAM 6 Set of all real umbers P A..d. B, p Posso Specal Istructos / Useful Data x,, :,,, x x Probablty of a evet A Idepedetly ad detcally dstrbuted Bomal dstrbuto wth parameters ad p Posso dstrbuto wth

More information

Almost Sure Convergence of Pair-wise NQD Random Sequence

Almost Sure Convergence of Pair-wise NQD Random Sequence www.ccseet.org/mas Moder Appled Scece Vol. 4 o. ; December 00 Almost Sure Covergece of Par-wse QD Radom Sequece Yachu Wu College of Scece Gul Uversty of Techology Gul 54004 Cha Tel: 86-37-377-6466 E-mal:

More information

Asymptotic normality of a recursive estimator of a conditional hazard function with functional stationary ergodic data

Asymptotic normality of a recursive estimator of a conditional hazard function with functional stationary ergodic data ,, ProbStat Forum, Volume, Aprl 08, Pages 36 5 ISSN 0974-335 ProbStat Forum s a e-joural. For detals please vst www.probstat.org. Asymptotc ormalty of a recursve estmator of a codtoal hazard fucto wth

More information

THE PROBABILISTIC STABILITY FOR THE GAMMA FUNCTIONAL EQUATION

THE PROBABILISTIC STABILITY FOR THE GAMMA FUNCTIONAL EQUATION Joural of Scece ad Arts Year 12, No. 3(2), pp. 297-32, 212 ORIGINAL AER THE ROBABILISTIC STABILITY FOR THE GAMMA FUNCTIONAL EQUATION DOREL MIHET 1, CLAUDIA ZAHARIA 1 Mauscrpt receved: 3.6.212; Accepted

More information

Introduction to local (nonparametric) density estimation. methods

Introduction to local (nonparametric) density estimation. methods Itroducto to local (oparametrc) desty estmato methods A slecture by Yu Lu for ECE 66 Sprg 014 1. Itroducto Ths slecture troduces two local desty estmato methods whch are Parze desty estmato ad k-earest

More information

The Arithmetic-Geometric mean inequality in an external formula. Yuki Seo. October 23, 2012

The Arithmetic-Geometric mean inequality in an external formula. Yuki Seo. October 23, 2012 Sc. Math. Japocae Vol. 00, No. 0 0000, 000 000 1 The Arthmetc-Geometrc mea equalty a exteral formula Yuk Seo October 23, 2012 Abstract. The classcal Jese equalty ad ts reverse are dscussed by meas of terally

More information

Point Estimation: definition of estimators

Point Estimation: definition of estimators Pot Estmato: defto of estmators Pot estmator: ay fucto W (X,..., X ) of a data sample. The exercse of pot estmato s to use partcular fuctos of the data order to estmate certa ukow populato parameters.

More information

UNIVERSITY OF OSLO DEPARTMENT OF ECONOMICS

UNIVERSITY OF OSLO DEPARTMENT OF ECONOMICS UNIVERSITY OF OSLO DEPARTMENT OF ECONOMICS Exam: ECON430 Statstcs Date of exam: Frday, December 8, 07 Grades are gve: Jauary 4, 08 Tme for exam: 0900 am 00 oo The problem set covers 5 pages Resources allowed:

More information

Chapter 14 Logistic Regression Models

Chapter 14 Logistic Regression Models Chapter 4 Logstc Regresso Models I the lear regresso model X β + ε, there are two types of varables explaatory varables X, X,, X k ad study varable y These varables ca be measured o a cotuous scale as

More information

3. Basic Concepts: Consequences and Properties

3. Basic Concepts: Consequences and Properties : 3. Basc Cocepts: Cosequeces ad Propertes Markku Jutt Overvew More advaced cosequeces ad propertes of the basc cocepts troduced the prevous lecture are derved. Source The materal s maly based o Sectos.6.8

More information

Simulation Output Analysis

Simulation Output Analysis Smulato Output Aalyss Summary Examples Parameter Estmato Sample Mea ad Varace Pot ad Iterval Estmato ermatg ad o-ermatg Smulato Mea Square Errors Example: Sgle Server Queueg System x(t) S 4 S 4 S 3 S 5

More information

= lim. (x 1 x 2... x n ) 1 n. = log. x i. = M, n

= lim. (x 1 x 2... x n ) 1 n. = log. x i. = M, n .. Soluto of Problem. M s obvously cotuous o ], [ ad ], [. Observe that M x,..., x ) M x,..., x ) )..) We ext show that M s odecreasg o ], [. Of course.) mles that M s odecreasg o ], [ as well. To show

More information

International Journal of Mathematical Archive-5(8), 2014, Available online through ISSN

International Journal of Mathematical Archive-5(8), 2014, Available online through   ISSN Iteratoal Joural of Mathematcal Archve-5(8) 204 25-29 Avalable ole through www.jma.fo ISSN 2229 5046 COMMON FIXED POINT OF GENERALIZED CONTRACTION MAPPING IN FUZZY METRIC SPACES Hamd Mottagh Golsha* ad

More information

Large and Moderate Deviation Principles for Kernel Distribution Estimator

Large and Moderate Deviation Principles for Kernel Distribution Estimator Iteratoal Mathematcal Forum, Vol. 9, 2014, o. 18, 871-890 HIKARI Ltd, www.m-hkar.com http://dx.do.org/10.12988/mf.2014.4488 Large ad Moderate Devato Prcples for Kerel Dstrbuto Estmator Yousr Slaou Uversté

More information

Introduction to Probability

Introduction to Probability Itroducto to Probablty Nader H Bshouty Departmet of Computer Scece Techo 32000 Israel e-mal: bshouty@cstechoacl 1 Combatorcs 11 Smple Rules I Combatorcs The rule of sum says that the umber of ways to choose

More information

Rademacher Complexity. Examples

Rademacher Complexity. Examples Algorthmc Foudatos of Learg Lecture 3 Rademacher Complexty. Examples Lecturer: Patrck Rebesch Verso: October 16th 018 3.1 Itroducto I the last lecture we troduced the oto of Rademacher complexty ad showed

More information

Chapter 4 (Part 1): Non-Parametric Classification (Sections ) Pattern Classification 4.3) Announcements

Chapter 4 (Part 1): Non-Parametric Classification (Sections ) Pattern Classification 4.3) Announcements Aoucemets No-Parametrc Desty Estmato Techques HW assged Most of ths lecture was o the blacboard. These sldes cover the same materal as preseted DHS Bometrcs CSE 90-a Lecture 7 CSE90a Fall 06 CSE90a Fall

More information

CHAPTER VI Statistical Analysis of Experimental Data

CHAPTER VI Statistical Analysis of Experimental Data Chapter VI Statstcal Aalyss of Expermetal Data CHAPTER VI Statstcal Aalyss of Expermetal Data Measuremets do ot lead to a uque value. Ths s a result of the multtude of errors (maly radom errors) that ca

More information

A tighter lower bound on the circuit size of the hardest Boolean functions

A tighter lower bound on the circuit size of the hardest Boolean functions Electroc Colloquum o Computatoal Complexty, Report No. 86 2011) A tghter lower boud o the crcut sze of the hardest Boolea fuctos Masak Yamamoto Abstract I [IPL2005], Fradse ad Mlterse mproved bouds o the

More information

TESTS BASED ON MAXIMUM LIKELIHOOD

TESTS BASED ON MAXIMUM LIKELIHOOD ESE 5 Toy E. Smth. The Basc Example. TESTS BASED ON MAXIMUM LIKELIHOOD To llustrate the propertes of maxmum lkelhood estmates ad tests, we cosder the smplest possble case of estmatg the mea of the ormal

More information

18.657: Mathematics of Machine Learning

18.657: Mathematics of Machine Learning 8.657: Mathematcs of Mache Learg Lecturer: Phlppe Rgollet Lecture 3 Scrbe: James Hrst Sep. 6, 205.5 Learg wth a fte dctoary Recall from the ed of last lecture our setup: We are workg wth a fte dctoary

More information

STK4011 and STK9011 Autumn 2016

STK4011 and STK9011 Autumn 2016 STK4 ad STK9 Autum 6 Pot estmato Covers (most of the followg materal from chapter 7: Secto 7.: pages 3-3 Secto 7..: pages 3-33 Secto 7..: pages 35-3 Secto 7..3: pages 34-35 Secto 7.3.: pages 33-33 Secto

More information

Probabilistic Meanings of Numerical Characteristics for Single Birth Processes

Probabilistic Meanings of Numerical Characteristics for Single Birth Processes A^VÇÚO 32 ò 5 Ï 206 c 0 Chese Joural of Appled Probablty ad Statstcs Oct 206 Vol 32 No 5 pp 452-462 do: 03969/jss00-426820605002 Probablstc Meags of Numercal Characterstcs for Sgle Brth Processes LIAO

More information

= 2. Statistic - function that doesn't depend on any of the known parameters; examples:

= 2. Statistic - function that doesn't depend on any of the known parameters; examples: of Samplg Theory amples - uemploymet househol cosumpto survey Raom sample - set of rv's... ; 's have ot strbuto [ ] f f s vector of parameters e.g. Statstc - fucto that oes't epe o ay of the ow parameters;

More information

Chapter 10 Two Stage Sampling (Subsampling)

Chapter 10 Two Stage Sampling (Subsampling) Chapter 0 To tage amplg (usamplg) I cluster samplg, all the elemets the selected clusters are surveyed oreover, the effcecy cluster samplg depeds o sze of the cluster As the sze creases, the effcecy decreases

More information

On Convergence a Variation of the Converse of Fabry Gap Theorem

On Convergence a Variation of the Converse of Fabry Gap Theorem Scece Joural of Appled Matheatcs ad Statstcs 05; 3(): 58-6 Pulshed ole Aprl 05 (http://www.scecepulshggroup.co//sas) do: 0.648/.sas.05030.5 ISSN: 376-949 (Prt); ISSN: 376-953 (Ole) O Covergece a Varato

More information

STATISTICAL PROPERTIES OF LEAST SQUARES ESTIMATORS. x, where. = y - ˆ " 1

STATISTICAL PROPERTIES OF LEAST SQUARES ESTIMATORS. x, where. = y - ˆ  1 STATISTICAL PROPERTIES OF LEAST SQUARES ESTIMATORS Recall Assumpto E(Y x) η 0 + η x (lear codtoal mea fucto) Data (x, y ), (x 2, y 2 ),, (x, y ) Least squares estmator ˆ E (Y x) ˆ " 0 + ˆ " x, where ˆ

More information

,m = 1,...,n; 2 ; p m (1 p) n m,m = 0,...,n; E[X] = np; n! e λ,n 0; E[X] = λ.

,m = 1,...,n; 2 ; p m (1 p) n m,m = 0,...,n; E[X] = np; n! e λ,n 0; E[X] = λ. CS70: Lecture 21. Revew: Dstrbutos Revew: Idepedece Varace; Iequaltes; WLLN 1. Revew: Dstrbutos 2. Revew: Idepedece 3. Varace 4. Iequaltes Markov Chebyshev 5. Weak Law of Large Numbers U[1,...,] : Pr[X

More information

J P S S. A comprehensive journal of probability and statistics for theorists, methodologists, practitioners, teachers, and others

J P S S. A comprehensive journal of probability and statistics for theorists, methodologists, practitioners, teachers, and others ISSN 76-338 J P S S A comprehesve joural of probablty ad statstcs for theorsts methodologsts practtoers teachers ad others JOURNAL OF PROBABILITY AND STATISTICAL SCIENCE Volume 8 Number August 00 Joural

More information

22 Nonparametric Methods.

22 Nonparametric Methods. 22 oparametrc Methods. I parametrc models oe assumes apror that the dstrbutos have a specfc form wth oe or more ukow parameters ad oe tres to fd the best or atleast reasoably effcet procedures that aswer

More information

Ordinary Least Squares Regression. Simple Regression. Algebra and Assumptions.

Ordinary Least Squares Regression. Simple Regression. Algebra and Assumptions. Ordary Least Squares egresso. Smple egresso. Algebra ad Assumptos. I ths part of the course we are gog to study a techque for aalysg the lear relatoshp betwee two varables Y ad X. We have pars of observatos

More information

Packing of graphs with small product of sizes

Packing of graphs with small product of sizes Joural of Combatoral Theory, Seres B 98 (008) 4 45 www.elsever.com/locate/jctb Note Packg of graphs wth small product of szes Alexadr V. Kostochka a,b,,gexyu c, a Departmet of Mathematcs, Uversty of Illos,

More information

Estimation of Stress- Strength Reliability model using finite mixture of exponential distributions

Estimation of Stress- Strength Reliability model using finite mixture of exponential distributions Iteratoal Joural of Computatoal Egeerg Research Vol, 0 Issue, Estmato of Stress- Stregth Relablty model usg fte mxture of expoetal dstrbutos K.Sadhya, T.S.Umamaheswar Departmet of Mathematcs, Lal Bhadur

More information

CS286.2 Lecture 4: Dinur s Proof of the PCP Theorem

CS286.2 Lecture 4: Dinur s Proof of the PCP Theorem CS86. Lecture 4: Dur s Proof of the PCP Theorem Scrbe: Thom Bohdaowcz Prevously, we have prove a weak verso of the PCP theorem: NP PCP 1,1/ (r = poly, q = O(1)). Wth ths result we have the desred costat

More information

LINEAR RECURRENT SEQUENCES AND POWERS OF A SQUARE MATRIX

LINEAR RECURRENT SEQUENCES AND POWERS OF A SQUARE MATRIX INTEGERS: ELECTRONIC JOURNAL OF COMBINATORIAL NUMBER THEORY 6 2006, #A12 LINEAR RECURRENT SEQUENCES AND POWERS OF A SQUARE MATRIX Hacèe Belbachr 1 USTHB, Departmet of Mathematcs, POBox 32 El Ala, 16111,

More information

Aitken delta-squared generalized Juncgk-type iterative procedure

Aitken delta-squared generalized Juncgk-type iterative procedure Atke delta-squared geeralzed Jucgk-type teratve procedure M. De la Se Isttute of Research ad Developmet of Processes. Uversty of Basque Coutry Campus of Leoa (Bzkaa) PO Box. 644- Blbao, 488- Blbao. SPAIN

More information

Dimensionality Reduction and Learning

Dimensionality Reduction and Learning CMSC 35900 (Sprg 009) Large Scale Learg Lecture: 3 Dmesoalty Reducto ad Learg Istructors: Sham Kakade ad Greg Shakharovch L Supervsed Methods ad Dmesoalty Reducto The theme of these two lectures s that

More information

Research Article Multidimensional Hilbert-Type Inequalities with a Homogeneous Kernel

Research Article Multidimensional Hilbert-Type Inequalities with a Homogeneous Kernel Hdaw Publshg Corporato Joural of Iequaltes ad Applcatos Volume 29, Artcle ID 3958, 2 pages do:.55/29/3958 Research Artcle Multdmesoal Hlbert-Type Iequaltes wth a Homogeeous Kerel Predrag Vuovć Faculty

More information

Maps on Triangular Matrix Algebras

Maps on Triangular Matrix Algebras Maps o ragular Matrx lgebras HMED RMZI SOUROUR Departmet of Mathematcs ad Statstcs Uversty of Vctora Vctora, BC V8W 3P4 CND sourour@mathuvcca bstract We surveys results about somorphsms, Jorda somorphsms,

More information

Mu Sequences/Series Solutions National Convention 2014

Mu Sequences/Series Solutions National Convention 2014 Mu Sequeces/Seres Solutos Natoal Coveto 04 C 6 E A 6C A 6 B B 7 A D 7 D C 7 A B 8 A B 8 A C 8 E 4 B 9 B 4 E 9 B 4 C 9 E C 0 A A 0 D B 0 C C Usg basc propertes of arthmetc sequeces, we fd a ad bm m We eed

More information

Analysis of Variance with Weibull Data

Analysis of Variance with Weibull Data Aalyss of Varace wth Webull Data Lahaa Watthaacheewaul Abstract I statstcal data aalyss by aalyss of varace, the usual basc assumptos are that the model s addtve ad the errors are radomly, depedetly, ad

More information

hp calculators HP 30S Statistics Averages and Standard Deviations Average and Standard Deviation Practice Finding Averages and Standard Deviations

hp calculators HP 30S Statistics Averages and Standard Deviations Average and Standard Deviation Practice Finding Averages and Standard Deviations HP 30S Statstcs Averages ad Stadard Devatos Average ad Stadard Devato Practce Fdg Averages ad Stadard Devatos HP 30S Statstcs Averages ad Stadard Devatos Average ad stadard devato The HP 30S provdes several

More information

ON THE LAWS OF LARGE NUMBERS FOR DEPENDENT RANDOM VARIABLES

ON THE LAWS OF LARGE NUMBERS FOR DEPENDENT RANDOM VARIABLES Joural of Sees Islam Republ of Ira 4(3): 7-75 (003) Uversty of Tehra ISSN 06-04 ON THE LAWS OF LARGE NUMBERS FOR DEPENDENT RANDOM VARIABLES HR Nl Sa * ad A Bozorga Departmet of Mathemats Brjad Uversty

More information

ON THE LOGARITHMIC INTEGRAL

ON THE LOGARITHMIC INTEGRAL Hacettepe Joural of Mathematcs ad Statstcs Volume 39(3) (21), 393 41 ON THE LOGARITHMIC INTEGRAL Bra Fsher ad Bljaa Jolevska-Tueska Receved 29:9 :29 : Accepted 2 :3 :21 Abstract The logarthmc tegral l(x)

More information

Journal of Mathematical Analysis and Applications

Journal of Mathematical Analysis and Applications J. Math. Aal. Appl. 365 200) 358 362 Cotets lsts avalable at SceceDrect Joural of Mathematcal Aalyss ad Applcatos www.elsever.com/locate/maa Asymptotc behavor of termedate pots the dfferetal mea value

More information

Hyun-Chull Kim and Tae-Sung Kim

Hyun-Chull Kim and Tae-Sung Kim Commu. Korea Math. Soc. 20 2005), No. 3, pp. 531 538 A CENTRAL LIMIT THEOREM FOR GENERAL WEIGHTED SUM OF LNQD RANDOM VARIABLES AND ITS APPLICATION Hyu-Chull Kim ad Tae-Sug Kim Abstract. I this paper we

More information

CIS 800/002 The Algorithmic Foundations of Data Privacy October 13, Lecture 9. Database Update Algorithms: Multiplicative Weights

CIS 800/002 The Algorithmic Foundations of Data Privacy October 13, Lecture 9. Database Update Algorithms: Multiplicative Weights CIS 800/002 The Algorthmc Foudatos of Data Prvacy October 13, 2011 Lecturer: Aaro Roth Lecture 9 Scrbe: Aaro Roth Database Update Algorthms: Multplcatve Weghts We ll recall aga) some deftos from last tme:

More information

STA302/1001-Fall 2008 Midterm Test October 21, 2008

STA302/1001-Fall 2008 Midterm Test October 21, 2008 STA3/-Fall 8 Mdterm Test October, 8 Last Name: Frst Name: Studet Number: Erolled (Crcle oe) STA3 STA INSTRUCTIONS Tme allowed: hour 45 mutes Ads allowed: A o-programmable calculator A table of values from

More information

4 Inner Product Spaces

4 Inner Product Spaces 11.MH1 LINEAR ALGEBRA Summary Notes 4 Ier Product Spaces Ier product s the abstracto to geeral vector spaces of the famlar dea of the scalar product of two vectors or 3. I what follows, keep these key

More information

Ideal multigrades with trigonometric coefficients

Ideal multigrades with trigonometric coefficients Ideal multgrades wth trgoometrc coeffcets Zarathustra Brady December 13, 010 1 The problem A (, k) multgrade s defed as a par of dstct sets of tegers such that (a 1,..., a ; b 1,..., b ) a j = =1 for all

More information

Q-analogue of a Linear Transformation Preserving Log-concavity

Q-analogue of a Linear Transformation Preserving Log-concavity Iteratoal Joural of Algebra, Vol. 1, 2007, o. 2, 87-94 Q-aalogue of a Lear Trasformato Preservg Log-cocavty Daozhog Luo Departmet of Mathematcs, Huaqao Uversty Quazhou, Fua 362021, P. R. Cha ldzblue@163.com

More information

Discrete Mathematics and Probability Theory Fall 2016 Seshia and Walrand DIS 10b

Discrete Mathematics and Probability Theory Fall 2016 Seshia and Walrand DIS 10b CS 70 Dscrete Mathematcs ad Probablty Theory Fall 206 Sesha ad Walrad DIS 0b. Wll I Get My Package? Seaky delvery guy of some compay s out delverg packages to customers. Not oly does he had a radom package

More information

Lecture 3. Sampling, sampling distributions, and parameter estimation

Lecture 3. Sampling, sampling distributions, and parameter estimation Lecture 3 Samplg, samplg dstrbutos, ad parameter estmato Samplg Defto Populato s defed as the collecto of all the possble observatos of terest. The collecto of observatos we take from the populato s called

More information

Qualifying Exam Statistical Theory Problem Solutions August 2005

Qualifying Exam Statistical Theory Problem Solutions August 2005 Qualfyg Exam Statstcal Theory Problem Solutos August 5. Let X, X,..., X be d uform U(,),

More information

ENGI 4421 Joint Probability Distributions Page Joint Probability Distributions [Navidi sections 2.5 and 2.6; Devore sections

ENGI 4421 Joint Probability Distributions Page Joint Probability Distributions [Navidi sections 2.5 and 2.6; Devore sections ENGI 441 Jot Probablty Dstrbutos Page 7-01 Jot Probablty Dstrbutos [Navd sectos.5 ad.6; Devore sectos 5.1-5.] The jot probablty mass fucto of two dscrete radom quattes, s, P ad p x y x y The margal probablty

More information

Generalized Convex Functions on Fractal Sets and Two Related Inequalities

Generalized Convex Functions on Fractal Sets and Two Related Inequalities Geeralzed Covex Fuctos o Fractal Sets ad Two Related Iequaltes Huxa Mo, X Su ad Dogya Yu 3,,3School of Scece, Bejg Uversty of Posts ad Telecommucatos, Bejg,00876, Cha, Correspodece should be addressed

More information

A Study on Generalized Generalized Quasi hyperbolic Kac Moody algebra QHGGH of rank 10

A Study on Generalized Generalized Quasi hyperbolic Kac Moody algebra QHGGH of rank 10 Global Joural of Mathematcal Sceces: Theory ad Practcal. ISSN 974-3 Volume 9, Number 3 (7), pp. 43-4 Iteratoal Research Publcato House http://www.rphouse.com A Study o Geeralzed Geeralzed Quas (9) hyperbolc

More information

Wu-Hausman Test: But if X and ε are independent, βˆ. ECON 324 Page 1

Wu-Hausman Test: But if X and ε are independent, βˆ. ECON 324 Page 1 Wu-Hausma Test: Detectg Falure of E( ε X ) Caot drectly test ths assumpto because lack ubased estmator of ε ad the OLS resduals wll be orthogoal to X, by costructo as ca be see from the momet codto X'

More information

Some Different Perspectives on Linear Least Squares

Some Different Perspectives on Linear Least Squares Soe Dfferet Perspectves o Lear Least Squares A stadard proble statstcs s to easure a respose or depedet varable, y, at fed values of oe or ore depedet varables. Soetes there ests a deterstc odel y f (,,

More information